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Abstract The property that the ground state eigenvalue of a Hamiltonian, depending
linearly upon a parameter, is a concave function of this parameter is generalised. It is
shown that the concavity or convexity of the nth eigenvalue depends upon the relative
weights of the states below the nth state, with respect to those above it, in a weighted
sum of transition energies. The result is illustrated on a model of matrix effect on
gas phase molecular vibrational spectra. The model is applied to the 2,3-naphthyne
molecule.

Keywords Concavity and convexity in chemistry · Molecular vibrational
spectra · Inert gas matrix · Naphthyne

1 Introduction

The aim of this article is to generalize a concavity property, previously used in the
context of electronic energy calculation [1], and to apply it to the context of vibrational
calculations.
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Many molecules of astrophysical interest, such as polycyclic aromatic hydrocar-
bons (PAHs), have been the subject of infra-red studies in inert gas matrices [2].
However, in the interstellar medium these molecules can be considered as isolated to
a very good approximation. So, the inert gas matrix effects have to be deconvoluted
from the experimental spectra before a rigorous comparison with astrophysical spectra
can be made.

This short communication presents a quartic oscillator effective Hamiltonian for
modelling frequency shift by inert gas matrices. It is arguably the simplest model one
can think of, and hence the one which is natural to start with. The model serves to illus-
trate a generalisation of the property that the ground state eigenvalue of a Hamiltonian
depending linearly upon a parameter, is a concave function of this parameter.

The article is organised as follows: In the next section we state and prove a neces-
sary and sufficient condition for the concavity or convexity of linearly parametrized
Hamiltonian eigenvalues. Then, in Sect. 3, we describe a quartic oscillator model and
the set of experimental data considered, to illustrate this theoretical result. In the last
section, we discuss some numerical results for the 2,3-naphthyne molecule in connec-
tion with concavity and present the conclusions that can be drawn from our simple
model.

2 Theorem

Let H(Z)be a Hamiltonian acting on a Hilbert space, depending upon a set of param-
eters gathered in a vector Z (typically in N

d , where N is the set of natural integers,
but, more generally, considered as an element of C

d ), such that for all real numbers,
λ ∈ [0, 1], it satisfies H(λZ1 +(1−λ)Z2) = λH(Z1)+(1−λ)H(Z2). Let us assume
that there is a domain, (i.e. an open and connected subset),D, for the parameter Z such
that the N lowest eigenvalues of H(Z) do not cross over other eigenvalues and have
their degeneracy order preserved, so that each of these eigenvalues can be followed
unambiguously as a function of Z in this domain. Let us denote by

(
Ei(Z)

)
i≥0 the

eigenvalues of H(Z) in increasing order but repeated if degenerate, and by
(
φi(Z)

)
i≥0

the associated eigenvectors forming an orthonormalized Hilbertian basis set. Let us
consider the jth eigenvalue (0 ≤ j < N), Ej(Z). First, we suppose for simplicity that
it is non degenerate.

Then, if, ∀Z1 < Z2 < Z3 ∈ D, the quantity:

Sj (Z1, Z2, Z3) := Z2 − Z3

Z1 − Z3

∑

i≥0

|〈φj (Z2)|φi(Z1)〉|2
(
Ei(Z1) − Ej(Z1)

)

+Z1 − Z2

Z1 − Z3

∑

i≥0

|〈φj (Z2)|φi(Z3)〉|2
(
Ei(Z3) − Ej(Z3)

)
, (1)

is positive, (respectively, negative, zero), then Ej(Z) is a concave (respectively, con-
vex, linear) function of Z.
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Proof By linearity we have,

H(Z2) = Z2 − Z3

Z1 − Z3
H(Z1) + Z1 − Z2

Z1 − Z3
H(Z3). (2)

Taking the expectation value over φj (Z2) and inserting the closure relationships given
by the Hilbert basis sets

(
φi(Z1)

)
i≥0 and

(
φi(Z3)

)
i≥0 we obtain,

Ej(Z2) = Z2 − Z3

Z1 − Z3

∑

i≥0

|〈φj (Z2)|φi(Z1)〉|2Ei(Z1)

+Z1 − Z2

Z1 − Z3

∑

i≥0

|〈φj (Z2)|φi(Z3)〉|2Ei(Z3). (3)

Adding and subtracting Ej (Z1), (respectively, Ej (Z3)), to the Ei(Z1)’s, (respectively,
the Ei(Z3)’s), and using the fact that

∑

i≥0
|〈φj (Z′)|φi(Z)〉|2 = 1, we arrive at,

Ej(Z2) = Sj (Z1, Z2, Z3) + cEj (Z1) + (1 − c)Ej (Z3), (4)

where we have set, c := Z2−Z3
Z1−Z3

.

So, if ∀Z1 < Z3 ∈ D, ∀c ∈ [0, 1], Sj (Z1, cZ1 + (1 − c)Z3, Z3) ≥ 0, then,

Ej(cZ1 + (1 − c)Z3) ≥ cEj (Z1) + (1 − c)Ej (Z3), (5)

and Ej(Z) is concave. In the same way, if ∀Z1 < Z3 ∈ D, ∀c ∈ [0, 1], Sj (Z1, cZ1 +
(1 − c)Z3, Z3) ≤ 0, (resp. = 0), then Ej(Z) is convex, (resp. linear).
Remarks: In the sums over i in the expression of Sj (Z1, Z2, Z3) as a convex combi-
nation, the term for i = j is zero, all the terms for i < j are negative and all those for
i > j are positive. So the sign of Sj (Z1, Z2, Z3) depends upon the relative importance
of the states below the jth state with respect to those above it, in the sum of transition
energies with respect to level Ej , weighted by the transition probabilities from state
φj (Z2). In particular, for j = 0 there is no state below, thus we have necessarily,
Sj (Z1, Z2, Z3) ≥ 0, that is to say, the ground state eigenvalue is always a concave
function. This is the result used in [1].

The generalisation to the case where Ej(Z) is degenerate, is straightforward. The
same proof is valid for any normalized vector of the degenerate eigenspace. It implies
that Sj (Z1, Z2, Z3) is invariant under a unitary transformation of φj (Z2) in the degen-
erate eigenspace. This, in turn, implies that transition probabilities, |〈φj (Z)|φi(Z′)〉|2,
such that Ei(Z′) has a lower degeneracy order than Ej(Z), are zero.

Also, the derivation of the proof follows through the same steps in the case of Z-
dependent Hilbert spaces, H(Z), provided that, for all Z,Z′ ∈ D the states of interest,(
φj (Z′)

)
0≤j<N

, belong to H(Z), so that
∑

i≥0
|〈φj (Z′)|φi(Z)〉|2 = ‖φj (Z′)‖2 = 1.
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A condition that is sufficient but not necessary, for concavity, (resp. convexity, lin-
earity) of Ej(Z), is that, for all Z,Z′ ∈ D,

∑

i≥0
|〈φj (Z′)|φi(Z)〉|2 (

Ei(Z) − Ej(Z)
)

be positive, (resp. negative, zero).

3 A model for inert gas matrix effect

At the simplest level of theory, the fundamental vibrational frequencies of a molecule
can be obtained from a set of independent harmonic oscillator Hamiltonians,

H 0
i = 1

2
P 2

i + 1

2
ω2

i Q
2
i , (6)

in mass-weightened normal coordinates, Qi , with conjugate moments, Pi .
Let us assume that, a matrix made of a rare gas with atomic number Z, affects the

vibrational levels according to a quartic perturbation of the form,(aiZ+bi)Q
4, where

ai and bi are real numbers dependent a priori upon vibration i. The vibrational energy
levels of the molecule in the matrix will be the eigenvalues of the quartic anharmonic
oscillator Hamiltonian,

Hi(Z) = 1

2
P 2

i + 1

2
ω2

i Q
2
i + (aiZ + bi)Q

4. (7)

As argued in the introduction, it is arguably the simplest empirical model one can think
of. However, the determination of the spectrum of such a Hamiltonian is a very diffi-
cult mathematical problem. For instance, the usual perturbation series diverge unless
sophisticated renormalization schemes are employed, in particular, when the quartic
force constant becomes large with respect to the quadratic one [3]. Moreover, when
the quartic force constant is less than zero, the spectrum is not bounded from below,
so that the use of variational methods can be problematic.

So, to avoid these problems, we place our model in finite dimensional Hilbert spaces,
spanned by a finite number of the low lying harmonic oscillator eigenfunctions which
have a negligeable weight in the unbounded regions of the potential, if any, (i.e. on
the other side of the barriers isolating the potential well, when (aiZ + bi) < 0). How-
ever, we assume that the number of harmonic oscillator (HO) basis functions is large
enough so that:

∑

i≥0
|〈φj (Z)|φi(Z′)〉|2 = 1, holds to numerical accuracy for the states

of interest in our study (i.e. the two lowest eigenstates). This insures that the theorem
of Sect. 2 is relevant to our numerical model (see remark for the case of Z-dependent
Hilbert spaces).

For each vibrational mode, the model has three free parameters, (ωi, ai, bi). So,
to apply the model to a concrete case, three experimental and/or theoretical data are
required to fix the values of these parameters. We have chosen to apply the model to
the case of 2,3-naphthyne, because it is a molecule for which there exist experimen-
tal wave numbers for four different vibrational modes with three different rare gas
matrices, namely neon, argon and krypton [4], as well as scaled, harmonic theoretical
calculations [5].

123



J Math Chem (2008) 44:981–987 985

We have considered that the theoretical numbers are “exact” for the no matrix case
at the harmonic level of approximation, that is to say, that the empirical scaling factors
employed by the authors take care of the finite basis set and electronic correlation
corrections to the quadratic force constants. So, we have taken the ωi’s from the theo-
retical wave numbers [5]. The ai, bi’s have been fitted to reproduce the experimental,
fundamental transition wave numbers for neon and krypton matrices. The experimen-
tal numbers for argon seems somewhat less accurate, (less significant digits tabulated
in [4]), and will only be used for comparison with the numbers interpolated from our
model.

4 Results and conclusions

The results of vibrational calculations with the effective Hamiltonians described in
the previous section are displayed in Table 1. The eigenproblems for each effective
Hamiltonian were solved in basis sets of 60 HO functions with the code
CONVIV [6].

The quartic constants ki := aiZ + bi were interpolated for argon, Z = 18, and
extrapolated for Z = 0. The relevant Z values for the model are those of rare gases,
Z = 2 for helium, Z = 10 for neon, Z = 18 for argon, Z = 36 for krypton,
Z = 54 for xenon ... Within our model, the case Z = 0 has the natural interpretation
of the anharmonicity corrected no-matrix case. The bi coefficients give an effec-
tive anharmonicity quartic constant for the no-matrix case. However, the importance
of some real matrix effects could very well decrease with gases of heavier atoms,
then the anharmonic no-matrix values would rather be found at large Z. So, the
proposed, effective Hamiltonian should be considered primarily as a “quick inspec-
tion” model. It serves us to illustrate the concavity property which gives lower
energy bounds for interpolated Z-values and upper energy bounds for extrapolated
Z-values.

The ai coefficients, which can be deduced from the slope of the quartic constants of
Table 1, give the strength of the matrix dependency. Unlike the bi coefficients which
are found with both signs according to the vibration, the ai’s are all negative. Conse-
quently, the higher the atomic weight, the lower the energy levels and the smaller the
fundamental transition frequencies in agreement with the experimental data. The total
quartic constants resulting from the intrinsic anharmonicity of the molecule and the
matrix effect are found negative for out-of-plane vibrations and positive for bending
vibrations for all rare gases.

The upper and lower energy bounds given by the theorem of Sect. 2, applied to the
“quick inspection” model of Sect. 3, are so close to the actual energy values that, one
can conclude that the energy levels depend essentially linearly upon Z, the curvature
of the eigenvalues of the Hamiltonian as functions of Z being negligeable. This is
because line shift effects are found to be small when experimental wave numbers are
compared to the theoretical ones or compared between themselves. Consequently, the
quartic force constants are confined to a small range of values for which non linear
effects hardly show up. The first excited state eigenvalues are further away from the
energy bounds than the ground state eigenvalues.
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Table 1 Interpolation and extrapolation of matrix effects on the vibrations of 2,3-Naphthyne

Harm Z = 0 Ne Ar Kr

C-C-C bending 1

Quartic constant 0 5.96 · 10−11 5.34 · 10−11 4.84 · 10−11 3.73 · 10−11

ZPE 219.0 221.4(019) 221.2 220.9(615) 220.5

Bound from concavity 221.4(040) 220.9(606)

First level 657.0 668.8(472) 667.7 666.6(979) 664.5

Bound from concavity 668.8(633) 666.6(913)

Transition 438.0 447.4 446.5 445.7 (444) 444

C–C–C bending 2

Quartic constant 0 2.27 · 10−10 2.18 · 10−10 2.11 · 10−10 1.94 · 10−10

ZPE 300.0 304.8(252) 304.6 304.4(837) 304.1

Bound from concavity 304.8(261) 304.4(833)

First level 900.0 923.6(643) 922.8 922.0(168) 920.4

Bound from concavity 923.6(709) 922.0(141)

Transition 600.0 618.8 618.1 617.5 (618) 616.2

C–C–C out-of-plane

Quartic constant 0 +0.56 · 10−11 −0.69 · 10−11 −1.69 · 10−11 −3.94 · 10−11

ZPE 369.5 369.5(817) 369.4 369.2(545) 368.9

Bound from concavity 369.5(824) 369.2(542)

First level 1108.5 1108.9(082) 1108.0 1107.2(712) 1105.6

Bound from concavity 1108.9(142) 1107.2(689)

Transition 739.0 739.3 738.6 738.0 (738) 736.7

C–H out-of-plane

Quartic constant 0 −1.79 · 10−10 −1.95 · 10−10 −2.08 · 10−10 −2.36 · 10−10

ZPE 421.5 419.4(776) 419.3 419.1(530) 418.8

Bound from concavity 419.4(782) 419.1(527)

First level 1264.5 1254.3(205) 1253.4 1252.6(737) 1251.0

Bound from concavity 1254.3(261) 1252.6(714)

Transition 843.0 834.8 834.1 833.5 (833) 832.2

The “Harm” column shows the values corresponding to the harmonic Hamiltonians. Below the “ZPE”
(zero point energy) and “first level” rows, we show the upper bounds for “Z = 0” and lower bounds for Ar
assuming that the eigenvalues are concave functions of the atomic number Z, which is always true for the
ground state for the class of Hamiltonians considered, and seems also true for the first excited state as can
be checked a posteriori. The digits after the first decimal place are in parentheses. In the “Transition” row,
we show in parentheses the experimental, fundamental frequency for Ar. All wave numbers are in cm−1.
Quartic constants are in atomic units
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